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ABSTRACT

A treatment is given of the problem of constructing normal modes
for an arbitrarily bounded system from roots of the linear dispersion
relation D(wjg) = 0 for the corresponding infinite or periodically
bounded system. For a system described by continuous macroscopic
variables, and of general cylindrical form (uniform along an axis z,
say), each transverse eigenmode givesg rise to a set of axial normal
modes constructed from a pair of dominant roots ki(w) of D=0
satisfying the boundary conditions which are characterized by complex
reflection coefficients for the dominant waves. The implications of the
results for the interpretation of experiments'on plasma waves and
instabilities on finite cylinders is discussed, with particular reference

to the effects of end-plate damping and axial current on Q-machines,
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I. INTRODUCTION

Linear perturbation analyses of uniform plasmas (or any continuous
medium) are commonly carried out in the context of an initial wvalue pro-
blem in rectangular coordinates for an infinite, i.e. unbounded, system,
The perturbations are fourier transformed in space and either fourier
transformed or more correctly, to take account of causality, Laplace
transformed in time to derive a dispersion relation D<m’5’cy) = 0 for
perturbations proportional to exp i(wt - E-f) , where the C's represent
steady state system parameters. Inhomogeneous plasmas also are commonly
discussed for infinite rectangular geometry, with the gradients along x
(say), and in the local approximation kx >> C—l 3C/0x(i.e. weak inhomo-
geneity), so that again the perturbations can be fourier transformed in
space,

The dispersion relation D(w,E) = 0 1is regarded as giving the
dependent, generally complex, variable ® in terms of the independent
continuous real variable E , and wave types (a) are classified in terms
of the various branches wa<§ real). An essential feature of this approach
is that the modes w(E real), for the same (¢ and different g‘s, as

well as for different &'s are linearly independent. It follows that

b4

at long times the system is dominated by the mode giving the root

. . This corresponds to
i min

the slowest decaying mode for a stable system (wi

w(g real) with the minimum imaginary part
min =z 0), or the
fastest growing mode for an unstable system (wi min < 0). Furthermore,
theories for the nonlinear evolution of instabilities are also often
developedl’2 for unbounded systems in terms of these linearly independent
modes w(k real), leading to a homogeneous turbulent state which asympto-
tically is independent of the initial conditions, provided these have a
reasonably smooth k-spectrum.

Sometimes, as in the original quasilinear treatment5 of the weak
bump-in-the-tail electron instability, the problem is formulated for =

system of finite length, L with periodic boundary conditions, and the

b4

t Of the four possible conventions exp i (Ot k-f) we choose this
form for consistency with the work of Derfler and Briggs.




perturbations are fourier analyzed over a discrete set of linearly
independent modes kn = 2nyx/L, However, in evaluating the total effect
of nonlinear wave-particle (or wave-wave) interaction, the sums are
replaced by integrals. Effectively then, the system length is allowed
to tend to infinity, so the discrete modes become a continuum, and the
result is independent of L,

Since all physical systems are necessarily bounded, but not in
general periodiecally, the important question arises of the relevance of
theories for infinite, or periodically bounded, systems to the behavior
of real systems, Sometimes, in adapting such theories to practical geo-
metries, periodic boundary conditions are appropriate where a coordinate
closes on itself, For instance, drift modes derived in rectangular coor-
dinates {x;y,z) are adapted to cylindrical geometry (r,@,z) by identi-

, where m is the

fying ky with m/a for waves varying as exp-im&
azimuthal mode number and a 1is the radius at which the mode is localized.
Again, in adapting solutions for a cylinder to toroidal geometry, kz is
identified with n/R where n is the toroidal mode number and R 1is
the major radius. However, periodic boundary conditions are not always
appropriate. In particular, for the important practical case of a
cylindrical system of finite length, periodic boundary conditions can
never be justified on physical grounds since they involve a mathematical
assumption concerning how the system is continued beyond the boundaries,
a gquestion devoid of physical meaning. The implications of periodic
boundaries are brought out very clearly in computer simulations, where
particles reaching a boundary are reintroduced at the opposite boundary
instantaneously and with the same Velopity. Clearly this is a condition
which can never be realized in practice.

0f course, the reason why theories are usually derived for infinite,
or periodically bounded, systems is perfectly clear. It is precisely
to aveid the complicated questions involved in realistically modelling
the behavior of fields and particles at boundaries, and also to avoid
the necessity of solving an eigen problem for some particular finite
geometry, In this way one arrives at an ideal theory which describes

the essential behavior of the medium, uncomplicated by the effects of



boundary conditions or finite geometry. However, if such ideal theories
are to be of more than just theoretical interest, and have utility for
understanding or predicting the behavior of real systems, then the
introduction of boundaries must not modify the results in any significant
manner. Under some conditions perhaps, the ideal theory may give a
reasonable representation of the behavior of real systems, but the con-
ditions under which this is true are difficult to specify. In many cases,
however, the ideal theory clearly does not give a good representation of
the real system, as the following considerations show.

Firstly, boundaries can support surface waves f which are not
contained in the "infinite" dispersion relation, but which must sometimes
be included to satisfy boundary conditions. Secondly, when the boundaries
are not periodic, the perturbations cannot be fourier analyzed into a
set of linearly independent modes. To be more explicit, if one fourier
analyzes the perturbations over the finite length, then the separate
fourier components are in general coupled by the boundaries, and the
normal modes consist of infinite sums of these components. Thirdly,
when the boundaries are not periodic, linear instabilities generally
grow spatially instead of, or as well as, temporally, and the resulting
nonlinear (turbulent) state is in general inhomogeneous. In the case
that a steadily oscillating state occurs, the perturbations are better
described in terms of the roots of D = O for complex E and real ® ,
This approach is particularly relevant for externally driven systems as

discussed by Self7

in connection with beam-plasma instabilities and by
the Stanford group8 in connection with low frequency waves and insta-
bilities on a magnetized positive column., In this case the root of

D = 0 giving the maximum spatial growth for real ® 1is more significant
than that giving the maximum temporal growth for real E .

It should be noted that in general there is no one-to-one corres-
pondence between the branches Bﬁ (m real) and wa (5 real) , and one
arrives at quite different, but equally valid, classifications of wave
types on the two bases, Only for simple propagating waves (w and k

both real) does a correspondence exist; more generally a connection can

only be made through a process of conformal mapping in which & and g




are regarded as complex variables., The very different picture which
emerges according as one treats E or ® as real is exemplified by the
work of Gould9 for ion waves and by DerflerlO for electron waves in one-
dimensional collisionless Maxwellian plasmas, and by Selfll for ion and
drift waves and instabilities in weakly ionized inhomogeneous magneto-
plasmas,

When a dispersion relation is nearly satisfied by purely
real (@,k) in some vicinity (Ubr,ljr) say, so that
D{wr + jmi,}fr) = D(wr’lfr + ﬂfi) =0 with (a)i/wr), (jxfll/lzfr]) <«< 1,
the spatial and temporal growth or decay rates in this vicinity are

related by ®, = —Bi‘v w . This applies, for instance, for

the unstable waves in the interaction of a weak electron beam with a

~

1z
plasma when the beam is hot (resonant case) but not when the beam is
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cold (nonwresonant case). Drummond recalculated the quasilinear theory
of the weak bump-in-the-tail electron instability for the case of steady
gpatial growth in a half-gpace which, unlike the initial value problem

in infinite geometry he treated earlier, corresponds to a physically
realizable situation, if one neglects the effect of the second boundary.
Apart from some weak time-average quasi~potential effects associated with
the inhomogeneous electric fields, he found a quasilinear relaxation in
space similar to the relaxation in time given by the initial wvalue

problem, The spatial and temporal relaxation scales are related by the

group velocity of the unstable waves ka © K .

This is an example of how the ideal tiegiy can be interpreted to yield
answers relevant to a real situation. A similar example is the interpre-
tation of the ideal theory of homogeneous turbulence in ordinary fluids
to describe the inhomogeneous turbulence produced by a grid in a fluid
stream, where, in that case, the temporal and spatial scales are related
by the stream velocity. However, this congruence between the initial
value problem in infinite geometry (t z2 0, =< z< @) and the steady
problem for a half-space (z 20, =< t< @) does not generally hold,

For instance for the non-resonant interaction of a cold weak beam with

12
a plasma, the relative linear spatial growth rate lki‘/lErI may be



large even though the relative linear temporal growth rate (wi/wr) is
small, and such a congruence does not exist.

More generally one can pose the question of whether it is possible,
and if so under what conditions, to construct from roots of the "infinite'
dispersion relation solutions describing the behavior of bounded systems.
Clearly, if one can do this, even under some restricted conditions, it
greatly enhances the utility of the "infinite’ theory and avoids the
necessity of treating each bounded system as a separate problem., 4
related question is that of constructing solutions to describe externally
driven systems. Here it may be noted that, strictly, it only makes sense
to discuss an externally driven problem for a system having a boundary,
since one can only apply an external source there.

These questions are of great practical significance for the design
and interpretation of laboratory plasma experiments, which may be broadly
divided into two categories. 1In the first, one is concerned with devising
experiments to verify the dispersion relation of stable or unstable waves
under controlled conditions. Here one tries to make the geometry and
boundary conditions as simple as possible to facilitate theoretical
interpretation. For this purpose the favorite vehicle has been a long
cylindrical plasma either of the internally generated type (dc or rf
positive columns, PIG discharge etc.) or of the externally generated type
(surface ionization, duoplasmatron, hollow cathode or rf sources). With
care a uniform plasma can be created which is effectively one-dimensional
i.,e., the steady-state parameters are a function only of radius., In the
second category, one is concerned with the instabilities of plasmas
occurring in various fusion-type devices, where geometrical simplicity
is lost by the need to introduce mirror, multipole or shear magnetic
fields, toroidal geometry, etc., in order to contain a hot, dense plasma.
Here the emphasis is more on suppressing or controlling instabilities than
studying them per se.

In either category of experiment, when the system is unstable, and
self-excited instabilities grow in time to some nonlinearly saturated
state, one is obliged, in the absence of a nonlinear theory, to compare

the characteristics, in particular the frequency and wavenumber spectrum,




of the nonlinear state with linear theory. Clearly, no such comparison
is strictly possible, though the assumption is usually made that the
freguencies and‘wavenumbers having the highest temporal growth rates
(for real %) in the linear theory will be most in evidence in the non-
linear regime. Such a comparison is most plausible when there is an
external parameter C which can be adjusted to take the system across

a boundary C from stability to instability, since for values of C

0
just above C it is to be expected that the nonlinear state will most

0
closely reflect the predictions of linear theory. Sometimes a direct
check of the linear temporal growth rate can be made either by suddenly
switching C across the boundary value Co,15 or by feeigack stabilizing
the instability and suddenly switching off the feedback.

A feature common to many experimental studies of temporally growing
instabilities is that the results are interpreted in terms of the roots
w(% real) of the "infinite' dispersion relation without enquiring properly
into the effects of boundaries. Values of real g determined by the
system dimensions are employed even though the boundaries are clearly not
periodic., In fact, there seems to be a rather widespread misconception,
no doubt engendered by the theorist’s predilection for infinite or
periodic systems, that the behavior of real systems must always be inter-
preted (or interpretable) in terms of the roots of the "infinite' dis-
persion relation for real E .

There is, however, another method for studying instabilities under
linear conditions which avoids this difficulty. It is applicable when
it can be arranged that the instability grows in space rather than in
time, and is essentially the same as is commonly employed for studying
the dispersion of stable waves. The system is externally excited at
gsome location at some (real) frequency mO and the amplitude and phase
of the resulting waves is measured as a function of position. Thus the
complex propagation constant (gr + iEi) of the dominant wave is compared
with the roots %(w real) of the linear dispersion relation, and as C
exceeds C a transition from an attenuating to an amplifying wave is

0
observed, Whether the instability grows to a nonlinear level depends



on the product of the spatial growth rate and the system length, together
with the excitation amplitude, This method facilitates a rather thorough
check of the linear dispersion relation and has been employed for studying
beam——plasma7J17 and positive column instabilities.B’18
In this paper we consider the question posed above, of whether and
how it is possible to construct, from roots of the "infinite" dispersion
relation, solutions describing the behavior of bounded systems. We
especially consider cylindrical systems of finite length and have in mind
the application to basic wave and instability studies where this geometry
is so frequently employed. Because of the existence of surface waves,
it must be concluded that in general the answer to our guestion must be
negative, which leads to the discouraging conclusion that for rigorous
results each and every bounded problem must perforce be treated individu-~
ally. However, one is left with the feeling that it ought to be possible,
under some conditions at least, to draw conclusions about the behavior
of bounded systems from a knowledge of the dispersion relation for the
infinite system. After all, in simple cases, such as acoustic or electro-
magnetic waves in passive lossless media, there is no difficulty in
interpreting the roots of the "infinite"’ dispersion relation to describe
the propagation of externally excited waves, or in using such roots to
construct normal mode solutions for cavity resonators with ideal boundaries.
However, the extension of these ideas to active (unstable) media
and more general boundary conditions is not entirely trivial, but may
be made, subject to certain restrictions, as we discuss. To do this
two steps are necessary. Firstly, in Sec. II, we make use of the existing
theory for the interpretation of waves and instabilities in infinite
systems, making an elementary extension of that theory. Secondly, in
Sec. III, we borrow from transmission line theory the concept of character-
izing a boundary by a complex impedance or reflection coefficient to
construct normal modes for an arbitrarily bounded system, This allows
us to discuss, in general terms, how the system behavior depends on the
form of the "infinite" dispersion relation and the terminations. These

ideas are applied to collisional instabilities in a Q-machine in Sec. v,

The paper is concluded by a discussion in Sec. V.




IT. INTERPRETATION OF DISPERSION RELATIONS FOR INFINITE SYSTEMS

If one derives a linear dispersion relation D(w,k) = 0 simply by
assuming that the perturbed variables are proportional to exp i(wt—k-r) 5
there arises a difficulty in interpreting its roots with complex k

whether

because one cannot distinguish, purely from the sign of k, |,
~ 1

the wave is amplifying or attenuating, since one does not know whether
to consider increasing or decreasing position values. [For complex
roots no difficulty arises because we always consider time increasing].
For stable systems there is no problem because on physical grounds all
such waves must be attenuating, but for active systems there is an ambi-
guity,

Historically, such difficulties were apparently first encountered
in connection with the theory of distributed electron tubes of the
travelling wave type. There the question was resolved by a combination
of calculations for specific systems together with a strong element of
physical intuition. Similar problems arose in the theory of plasma
streaming instabilities19 in connection with noise radiation in solar
radio bursts. Piercego and Twissg1 emphnasized that the difficulties
arose because the problems were improperly formulated, there being no
explicit reference to initial and boundary conditions. In a very detailed
study of propagation in electron~ion streams, by the method of Laplace
transforms, Twiss21 showed how to distinguish amplifying and attenuating
waves, He also gave the first indication of the distinction between
convective and absolute (non—convective) instabilities in the response
of an unstable system to a localized initial disturbance (Fig. 1). The
latter distinction was also made by Landau and Liftshitz22 and brought
out very clearly by Sturrock.g5 For the special case of the coupling of
two simple propagating modes, Sturrock showed how to distinguish, purely
from the topology of the conformal mappings of D(w,E) = 0 , between
amplifying and attenuating waves, and between convective and absolute
instabilities, emphasizing the essential similarity between convective
instabilities and amplifying waves. "

-5

Subsequently a number of workers2 have developed thecse ideas in

varying degrees of generality and have given criteria for distinguishing
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convective from absolute instabilities and amplifying from attenuating
waves., While these criteria are stated in different ways, and vary in
their ease of application, they mostly appear to have the same essential
content and yield the same results, except perhaps in exceptional cases.

31

Most authors consider a one-dimensional system, but Dysthe gives results
for three dimensions. Some take an infinite system and use fourier trans-
forms while others take a semi~infinite system and use Laplace transforus
in space., Many treatments are restricted to certain types of dispersion
relations, in particular ones that are algebraic or polynomials in

and k , Some, especially Derfler}gu discuss more general cases, in
particular when D(w,g) is a multi-valued function as arises, in general,
in the kinetic theory of hot plasmas. In the following, we briefly out-
line the theory, following for the most part the treatment of Briggs,2

and for simplicity consider the case when D(w,E) is a (finite) poly-
nomial (of order « in ® and B in E) as is usually the case in

fluid trestments of plasmas.

(A) Classification of Instability and Wave Types

Consider a time-~invariant system of general cylindrical form,
infinite and uniform along z , for which a linear perturbation analysis
by the ansatz exp i(wt—kz) yields a dispersion relation D(wjk) = 0., It
is implied that the transverse eigen problem has been solved and that,
for simplicity, we are considering excitation in one of the linearly
independent transverse eigenmodes, The roots wa(k real) of D=0 give
the temporal growth or decay rates for an initial perturbation in the
form of an infinite sinusoid exp -ikz, where we assume that wi(k) is
finite fox all real k , By definition the system is unstable if for
any real k there exists a root with wi < 0 ; otherwise, i.e. if
mi nin = 0 for all real k ,

Now consider an initially quiescent system excited by a source

the system is stable,
s(t,z) = g(z) £ (t) localized to |z|=< d and switched on at t =0 ,

i.e. g{z) =0 for |z|> d and £ =0 for t <0 . The system

response is written

10



S o S

¥(t,2) = 6(0,5) £() ¢ (k) exp i(et-ka)
—00 —oo+j(j

dbdk_
(x)?

(1)
0

Here | represents any first order variable, f(w) is the Laplace
transform of f(t), g(k) is the fourier transform of g(z) and

G(w’k) = [D(w:k)]_l is the Laplace-fourier transform of the Greens
function. The fourier integral path (F.I.P.) is taken along the real k
axis while the Laplace integral path (L.I.P.) is taken below all singu~
larities of the integrand,i.e. © sufficiently negative. Interchenging

0
the order of integration, the response can be written

9+ §O

0 dw
i(t,2) =] Flo,z) £(0) exp i 0t =— (2)
4w+ico
where
. dk
F(w,z) f}[ G{w,k) g(k) exp ~-ikz = - (%)

Cco

Consider first the evaluation of F for any O = wL on the L.I.P.
Since g(z) is localized, then for any physically realizable form, g(k)
is an entire function (having no singularities in the finite k--plane)w
Thus the only singularities in the integrand of (5) are those of
G(wL,k). In the simple cases to which the present discussion is limited;
these singularities of G will be poles at the zeros of D(wL’k} =0 .
The integral, Eq. (3), can then be evaluated, by closing the contour at
infinity in the upper half k-plane for z < -d and in the lower half
k-plane for =z > d , as a sum of the residues of the poles of G(wL,k}
at k = ké(wL) and k;(wL in the upper and lower half-planes

respectively:

11




ig(k—) exp ~-ik =z
{BD - . (ka)

3k (wL’k)Jk=ké

Rl 2 < -a) =)
B

and

. ot +
-1g(k ) exp -ik =z
R - : (ko)
[§E (wL’k)|k=kg

F(wLJz > d) =§Z

p

Here we have accounted only for simple poles. In general higher order
poles only occur for discrete &i at isolated positions in the k-plane
and may be treated as a merging of simple poles as discussed later, It
may be noted that the F's in Egs. (M) are given as a sum of modes which
for any wL on the L.I.P, decay away from the source. Moreover, it is
determined whether a given root kﬁ(mi) appears in the response for

z < =-d or z>d .

Now consider the Laplace inversion, Eq. (2). To find the asymptotic
Ct - m) response we deform the L.I.P, as far as possible into the upper
half plane, when it is clear that the asymptotic response is governed by
the lowest singularity of the integrand F(w}z) f(w) in the ®-plane,

At this point we specialize to an (undriven) initial value problem,
teking £(t) = 8(t) , a delta function, so that f£(®) =1 , and we are
only concerned with the singularities of F(wL,z) . It is now clear
that in this case it is sufficient that the L.I.P. be taken below the

lowest branch wa(k real) of D = O,i.e. SN N (k real). As

imi
traverses the L,I.P., the poles of G(wL’k> trace contours in the

k-plane, namely the contours ® = wr + iGO in the map of ® into the

k-plane via D = O {Fig. 2a), Further, as the L.I.P, is raised in the

W=-plane {e,g. .0 such poles may cross the real k-axis., This will

0 l)
happen first when the L,I.P, is raised to intersect the lowest branch

wa(k real) i,e. when 0 2 © . When this happens, the function F

i min
must be redefined as its amalytic continuation F as the F,I.P. is
deformed to continue to include the same poles as before,.

In this way the L,I.P, may be continuously raised (Ol - 02) until

two poles of G<wL’k) collide or merge through the F.I.P., pinching it

12
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between them. When this happens at some <ws’ks) we have a double root
ks(ws) of D=0, i.e. a saddle point of w(k) in the map of ® into
the k-plane or, equivalently, a branch point of k(w) in the map of k
into the ®-plane via D =0 . In raising the L,I.P., still further

(02 - 05 it must be deformed around the branch cut of which the branch
point (ws’ks> forms one end point (Fig. 2b). The asymptotic response is
clearly governed by the lowest such branch point in the W-plane and can

be evaluated as

" ) g (ks) exp i(wst - ksz) (
z,t) m———— - 5)
’ f > [2ﬂ1<32D><-a—]2>Jl/2 t1/2
ak2 cw w Lk
s’ s

If the lowest such branch point (ms’ ks) lies in the lower half
plane (wsi < O) the response eventually increases without limit (in a
linear analysis) at all (finite) z, as described by Eq. (5), and the
system is by definition absolutely unstable. On the other hand, if the
lowest such branch point lies in the upper half plane (wsi > O) the

response eventually decays to zero at all finite =z according to

2
Eq. (5). In this case, if the system is unstable it is convectively
unstable and the perturbation grows but convects away. In all cases the
asymptotic response has an exponential envelope in space (except near
the front of the disturbance) given by exp —iksiz .

In general, saddle points of m(k) , i.e. branch points of k(w) 5
are given by the simultaneous solution of D = 0 and 3D/3k = O , and
at such points the group velocity is zero (d&/dk = O) . It should be
emphasized that not all such saddle/branch points are relevant; only
those branch/saddle points which correspond to a merging of roots k<w>
of D =0 from opposite half k-planes as wi is increased from -® ,
and thus pinch the F,I.P. This is the basic phenomenon on which the
various criteria and prescriptions for distinguishing convective and
absolute instabilities are based. It may be noted that in general the

lowest relevant branch/saddle point lies above the minimum of the lowest

branch wa (k real) , 1.e. minS wsi > wi min (k real). Exceptionally,
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the branch point can lie on the real k branch at its minimum, 1i,e,
mins wsi - wi min <k real).

The asymptotic response to the impulse g(z)5(t) is expressed in
terms of these relevant points of zero group velocity through Eq. (5)
and represent the natural or characteristic responses of the medium,
Physically it is implied that a system which is absolutely unstable
cannol exist in a steady state, since any perturbation, however small,
will grow and eventually fill all space. On the other hand, if the
system is not absolutely unstable (i.e. either stable or convectively
unstable) the response will eventually decay at all finite =z and the
system can exist in a steady state.

We now consider the response of the system to a continuing pertur-
bation (a driven system) at z = 0O by taking for the source

where the perturbation can be considered as

s(t,z) = 6(z) exp ﬂbot 5

externally imposed or due to internal thermal fluctuations., When wo

is real, it can be regarded as any fourier component of a periodic

excitation (internal or external). Alternatively, when ® is complex,

0
it can be regarded as an external excitation of increasing or decreasing

amplitude according to (exp - wOit)exp i® rt .

0

The process described above for evaluating the asymptotic response
proceeds as before, but this time, in evaluating the Laplace integral,

-1
Eq. (2)) we must take account of the singularity of f(w) = [i(w - wo)] 5
i.e., the pole at ® = wO . Clearly, if wO lies above the lowest
t i w w i i W . > min O

relevant branch point ( s’ks> of k( ) , L.e, if 0i mlns si 2 then
the foregoing arguments are unchanged, and the asymptotic response is
given by Eq,. (5)J as before. On the other hand, if wO lies below the

lowest relevant branch point i.e. if &bi < mins(bSi , then the asymptotic

response will be governed by the drive and can be evaluated as

y(t,z) t——:'gi'(wo,z) exp i ®,t . (6)

This is clearly expressed through Eq. (4), with g =1 , as a sum over
normal modes k5<w0) . The analytic continuation, F — F, determines

whether a particular root appears in the response for z < 0 or z > O ,
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and hence, from the sign of ki whether it grows or decays in space

)
away from the excitation plane =z = 0 .

Hitherto, in this type of analysis, wo has been taken as real,
corresponding to steady excitation, and the analysis is only applicable
for svstems which are not absolutely unstable. In this case the argument
given above leads to criteria for deciding on which side of the excitation
point the various waves 'kB<wO) appear and hence, from the sign of ki
whether they are amplifying or damped waves., The extension to complex
wO has been made for purposes which will become clear when we consider
bounded systems in Sec., III.

In the present context the physical meaning is clear. Even if the
system is absolutely unstable, provided the drive increases more
rapidly than the fastest growing absolute instability, the asymptotic
response will be governed by the drive and not by the natural response
of the system. On the other hand, if the system is not absolutely
unstable (i.e. stable or convectively unstable), the asymptotic response
will again be governed by the drive, even though it is a decreasing one,
provided it decays less rapidly than the slowest decaying natursl response
of the system., In either case the criter;a usually employed for real
wO , for determining whether the roots kﬁ(w0> appear in the response

for z< 0 or z>0 may still be employed for complex ®

J

O ®
(B) Application to Physical Systems

While the analysis of instability and wave types, outlined above,
is very illuminating, it should be remembered that it is strictly appli-
cable only to infinite systems, and it might therefore be thought to
have no immediate application to practical, bounded systems. However,
provided one assumes that the uniformity of the steady state is maintained
in the presence of boundaries, the analysis leads to useful results in
two respects.,

Firstly, it is clear that the response of a bounded system to an
initially localized perturbation is given by the "infinite" analysis up
until such time as a leading edge of the perturbation reaches a boundary.
Further, given proper boundary conditions on the waves, one could, in

principle, follow the transient response as disturbances are reflected
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to and fro between the boundaries., This concept is, however, mainly of
heuristic value; usually we do not require such a detailed description.

Secondly, a matter of more practical importance, is the fact that
in some circumstances it is possible, experimentally, to realize effectively
reflectionless terminations as in a transmission line matched load. This
is achieved, for instance}8 for ion acoustic and drift waves on a long
discharge column where the "uniform" axial magnetic field is allowed to
slowly diverge at the ends, and the electrodes are located well beyond
the uniform field region, In such cases one effectively simulates, as
far as the central uniform region is concerned, an infinite system, and
the results of the "infinite' analysis can be directly applied, with
the following conclusions,

If the "infinite" dispersion relation reveals an absolute instability,
then the finite system bounded by reflectionless terminations cannot exist
in a steady state., Perturbations will grow, as described asymptotically
by Eq. (5) until nonlinear effects become important. On the other hand,
if the "infinite’ dispersion relation reveals a convective instability,
the system will exist in a stationary state, governed by the dominant
amplifying wave 1.e. that root kB(w real) with the largest spatial
growth rate., In the absence of external excitation, this is driven by
noise fluctuations and the amplitude is controlled by the frequency
spectrum of the noise at the input end, i.e. the end from which waves
grow most strongly. Depending on the input-end noise level, the spatial
growth rate and the system length, the noise will be amplified to a level
which may either remain in the linear regime or reach nonlinear saturation
at some location. In the former case the system remains 1inear, even
though 1t is unstable, In the latter case it is clear that the nonlinear

(turbulent) state is inhomogeneous.

T It is not always possible to simulate a reflectionless termination by
gradually tapering the system ends, For instance for Langmuir waves,
which only propagate for ® > Wp , tapering off the plasma density
produces a distributed reflection, however gradual the taper.
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III, NORMAL MODES FOR A FINITE CYLINDER

In this section we discuss the construction of normal modes for a
uniform cylindrical system of finite length and arbitrary terminations
from appropriate roots of the linear dispersion relation for the equi-
valent infinite system.

The conditions under which it is valid to treat the finite system
as a terminated length of the infinite system needs some discussion.
Briefly, it is valid for ordinary dielectrics and cold plasmas and also,
subject to conditions discussed later, for fluids and plasmas treated
via fluid equations. It is, however, not in general valid for collision-
less plasmas treated by kinetic equations. The reason for the distinction
between dielectric or fluid treatments on the one hand, and kinetic
treatments on the other, is that in the former the particle dynamics used
to calculate the charge p and current J in Maxwell's equations are
determined purely by the local fields P and P , whereas in the latter
p and J are determined via integrals over the particle trajectories,
including earlier encounters with the boundaries.56m59 Thus in a cold
or fluid model a boundary imposes conditions on the fields and fluid
variables only at the boundary, whereas in a kinetic model the effect of

the boundary conditions on the particles is felt on the particle dynamics

throughout the system.

(é) Case when D(w,k) is Quadratic in k

We take the same basic model as for the infinite cylindrical system
of Sec., II, but of finite length z, Sz s 22 . Initially, for simplicity,
we consider the case where the dispersion relation D(w,k) =0 for a
given transverse eigenmode of the infinite system is quadratic in k

Now consider the two roots k(®) of D =0 , where ® 1is restricted

2
to values below the lowest relevant branch/saddle point, i.e.

wi < minS wsi . These roots can then be interpreted as the waves excited
on an infinite system by a localized external drive at (complex) frequency
® . We shall assume that they correspond to one (k—) excited on the

. . ' +
negative z side.and one (k ) excited on the positive z side as
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determined by whether they lie respectively in the upper or lower half

k~planes for wi < wi min (k real). This assumption is justified for
most cases of interest but there are exceptional cases where it is not.

Apart from the requirement that, for wi < W (k real),

k; > 0 and k: < 0 , which determinef the 1afellinglgf the roots, there
is no restriction on the signs of k; or k; . If ki > 0 and

ki <0 , the corresponding waves are fttenuating; with the opposite signs
they are amplifying. The signs of k; determine the directions of the

= pux .
phase velocities v_ = wr/k . Since wave energy must flow away from
) r

o+ T I+

the excitation point, the roots ki can be classified as forward
or backward waves according as vi is directed away from or towards
this point.

We now write the total solution for the bounded system as the

sum of these two waves,

+

b=+ = vt exp i(wt - k+z) + ¥ exp i(ot - K z) s (7

where the complex amplitudes are written

vE o v exp i0%

The wave ¢+ is regarded as excited at zy by reflection of the wave
, +
i and, likewise, is excited at z, by reflection of ¢

We define the (time-independent) complex reflection coefficients

by 5 P, as the ratios of the amplitudes of the reflected to incident

waves:

_ ¢+(Zl) _ I’lij+l

— —L exp i[—(k+—k—)z1 + (¢+-¢—)], (8a)
V(z) YT

py = ]pll exp * i@l

T For instance, for a one dimensional monoenergetic beam [D = l—mi/(w—kvo)gj
or a cold beam~-plasma system [D = 1—w§/w2 - aﬁ/(m—kvo)gj, the two roots

correspond to waves both excited on the same (downstream) side,
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= = 2 i I -k — +—- ) (
p2 lpE! exp * 192 " T exp 1[( k ) o (67 -0 )] (8b)
¥i(z,) ¥
= < o <
where O Ipl}gl 1 and -x <6 o T .

Here we have assumed that the phase of the reflected wave is given,
elther from physical arguments or by experiment, as leading or lagging
the incident wave by a certain angle ‘Ql , and adopt the convention
that 6 > O when the reflected wave leads and & < O when it lags,
In order to preserve this convention, irrespective of the sign of wr s
the alternate signs are introduced in Egs. (8), and should be taken as
+ or - according as a} >< 0 . [see Fig. 3.]

It is assumed that the terminations are such that the boundary
conditions can be met by these two waves in a single transverse eigen
mode (together perhaps with surface waves which are localized to the
boundaries, as discussed later), This will be true if the terminations
are uniform in the transverse plane. More generally the terminations
can couple different transverse modes together, as for example in magne-~
tron anodes where straps and output terminations are deliberately used
to create a desired spectrum of coupled transverse modes.LLO The theory
given here can be generalized to such cases in a straightforward manner.
It is also assumed that the reflection coefficients are frequency
independent, though again the analysis can be carried through when they
are specified functions of frequency.

Elimination of Y+/Y— between Egs. (8) yields
(x" - ¥ )L = [onn + (6, + 92)] - i[loglpil log\] ; (9)

where L = (22 - zl) is the system length, n = O, *1, *2 etc, and the

2 >
term (91+92) takes the same sign as wr . Thus specifying the reflection

coefficients together with the system length quantizes the

) 92
difference between the roots k+(w), k_(w) of the infinite dispersion
relation to a discrete set of (generally complex) values.

The physical content of Eq. (9) is just that the total phase shift

around the loop must be an integral multiple of 2x , and that the loop
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i t ity. Si < o < o e v ,
gain muf be unity ince log |p1| lpg‘ O , and, for i i min\l Leal)}
(ki - ki) < 0, it is clear that Eq. (9) can only be satisfied for
O, =z k 1).

5 i min( real) In general, for p1,2
least) must be amplifying, For perfect reflections pl = p2 =1 , the

# 1 , one of the waves (at

spatial growth rate of the amplifying wave equals the spatial damping
rate of the attenuated wave, Exceptionally, for reciprocal systems
(D even in k), Eq. (9) may be satisfied by purely real ki , for
perfect reflections,

We may now determine the (complex) frequencies wn of these axial

eigen modes which satisfy both Eq. (9) and the "infinite' dispersion

relation., Writing the latter in the form
a(0)k® + blw)k + c(®) = 0 (10)
we have (k¥ - k) = 2[b°(0) - La(w)e(w) M a(w) . (11)

The frequencies wn of the axial modes are then given by
+ -
eliminating (k - k ) between Egs. (9) and (11) and solving for © ,

Hence the normal mode frequencies are given by

2

a2(0) | [onn ¢ (6,46,)1 - 1 4o o, | lpzlf 2

i

Flo L,n)

)plﬁng

- (@) + ba(o)e(®) =0 . (12)
In case the system is reciprocal, i.e. D is even in k , then
k¥ = -k~ and Eq, (12) reduces to
12 -2
+ be(w) =0 . (12a)

In Eq. (12) the whole range of n values (n =0, z1, %2 etc.} are
allowed, but with the + sign on (91+92) only roots with ® > 0 are
admitted,while with the - sign only roots with wr < 0 are admitted,
Even with this limitation, Eq. (12) may still give extraneous roots

because it was derived by squaring Eqs. (9) and (ll) to remove the sign
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ambiguity in Eq. (11). To distinguish these, D = 0 (i.e. Eq.(10))

must be solved for each admitted root ® of Eq. (12) to give k+ and

k separately, identifying them by the prescription that kz < O and

+ -
k, > 0 as wi - - _  Only those roots giving (k - k ) with the

correct sign to satisfy Eq. (9) are proper roots wn .

It D(w,k> is of order « in ® , then F(w) is of order 20 or

less. Because of the possibility of extraneous roots it does not seem
possible in general to determine the number ' of proper roots wn

L, n, except that o' = 20 .

for fixed Pys pg, , n,

It should be emphasized that unless a root has @ < min O
n

a'i s si
the above procedure breaks down, because the initial restriction

wi < mingwsi , which allows one to identify the two roots k(w) as

waves excited on either side of an excitation point, is violated. We

shall use the term axial eigenmode to denote only those roots which

1

have O . < min® ., It is clear that these modes must have
no’ i s si +
& 2 nin ® (k real) , because otherwise both roots k  represent
ne 1 o Q1 n
attenuated waves and Eq. (9) cannot be satisfied.

Some of the implications of the foregoing analysis can be summarized
as follows:

(i} If min > minswsi there are no axial eigenmodes in the

w
no' no'i 4

sense used here,

(ii) If mnmin the asymptotic time response will be

< min ® . ,
s si

CD .
n' no'i
governed by this lowest mode and will grow or decay as

nC!

)t .

{iii) As either or both of the terminations are made more lossy (i.e.

exp —{min w
P ( ne’

iplllpnl made smaller) the spatial growth rates of the component waves
=

ki must increase and the wna' rise higher in the ®-plane, so that
for sufficiently lossy terminations condition (i) must apply, unless of
course there are no relevant branch/saddle points ws . The latter
condition applies for instance for a passive lossless waveguide, or

Bohm and Gross waves (D(m}k) = w2 - w%)- k2c2) in which case there are
always decaying axial eigenmodes however lossy the terminations, except

in the limit lplllp2| =0 .
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, SO that the

(iv) Wnhen minQﬁCDOCi (k real) < 0 but mins(Dsi >0
infinite system is convectively unstable, then in general, for suffi-
ciently lossless reflections, there will be growing axial eigenmodes,
However, if the values of reflection coefficients and system length
combine to make the allowed values of ki fall outside the range where
unstable waves occur, there will be no growing modes. This may happen,
for instance, when the range of real k giving temporal growth is
restricted to small values (long wavelengths) and the system is too
short to contain them., In this case, or when the reflections are made
sufficiently lossy to stabilize the growing modes, then the system can
exist in a steady state. The system behavior can then be described in

+
terms of the roots k (® real) of D = O , representing waves excited

J
internally by noise or externally at the boundaries, taking account of
the excitation of reflected waves. Although in this case linear theory
indicates a steady state, it may happen that the waves excited (by noise
or externally) at boundaries grow to a nonlinear level in the system
length.

(v) Wwhen minagdi (k real) < O and minscbSi < 0 , so that the infinite
system is absolutely unstable, then, except in the special case when

ws also happens to be the lowest point of the real k contour, there
will in general be growing modes for sufficiently reflecting terminations,
Of course it may happen that the values of pl,pg’L combine to disallow
any growing modes as described in (iv). As Iplllpgl is reduced from
unity the growth rates of the axial eigenmodes decrease until

when there are no longer any axial eigenmodes,

mi

> min &
s si

nna'&na'i
To describe the system now, it seems it would be necessary to follow the
development of an initial perturbation as it grows and spreads and is
successively reflected from the boundaries, However, it is clear that
perturbations must grow indefinitely since even in the limit

Py =Py = O , when the system is effectively unbounded, one knows that
perturbations described by Eq. (5) will grow indefinitely. Hence one
gets the result that while convective instabilities can always be

stabilized, i.e. prevented from growing in time, by sufficiently lossy

boundaries, absolute instabilities cannot.
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The movement of the growing mode frequencies mn as Ipll‘pg' is
decreased from unity, keeping 81,92 fixed, as described in (iv) and (v)
above, is illustrated in Fig. 4 for a case when D(w,k) is even in k .
In this case the real k contour folds on itself and the relevant branch/
saddle point occurs for k = 0 . The mapping of k into the ® plane
consists of two sheets but, because the roots ki(w>r occur in pairs
k+ = -k , the two sheets have been represented in one diagram. Also
the cases of convective and absolute ingtability are represented in the
same diagram by changing the position of the real ® axis.

For perfect reflections, |pll = |p2| = 1 , the modes wn lie on
the real k contour and are pure standing waves formed by superposition
of real ki waves, so there is no average power flow. Three such modes
ol0) (0) ,(0)

17 e 703 1
wn migrate towards the upper half plane; (e.g. mn in Fig. 4) decreasing

are shown, As lpl||p2| is decreased, the frequencies
the growth rate. The modes are no longer pure standing waves, but are
compogsed of two oppositely travelling amplifying waves. Part of the
energy released by the unstable medium flows into the lossy ends, the
rest going to give the temporal increase in wave energy. For the case
of convective instability, when all the modes have migrated into the
upper half plane (e.g. 031(12)in Fig, 4) the power flow to the ends is more
than the unstable medium can supply so the modes decay in time and the
system reverts to a steady state. For the absolutely unstable case,
when 1pl]1p2| is small enough that all the wn have migrated to
positions above the branch point ws (e.g.tDiB) in Fig. 4) there are no

longer gny axial eigen modes.

More specific examples are discussed in Sec., IV,

{B) Case when D(w k) is of Higher Order in k

When the dispersion relation is of order B > 2 in k , the various

roots k(w) can all be identified, for wi < minémsi , as waves excited
on the + or - sides of an excitation point. Usually B will be even
and there will be pairs of roots ké(w) corresponding to waves excited
on either side for each wave type. For instance, for a two component
plasma treated from the first two moment equations, p = L and there is

a pair of pressure waves associated primarily with the electrons
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(Langmuir waves) and another pair associated primarily with the ions

R Y
(ion waves). 1In such a case we can write the total solution as

=
I

- + - +
+ + +
R RN

where

Y
e

B

exp i(wt - k
> e)

S

z) (13)

We should then need to define a set of reflection coefficients

0., 0 . .
Pee? Piir Peir p1e

that a wave of a given type can excite by reflection not only the same

for each termination to take account of the fact

type but also the other type. In principle one can eliminate the V¥'s
to obtain a relation among the four wave vectors Kk # in terms of the
p's which serves to determine the mode frequencies %rom the dispersion
relation, In practice, however, the procedure is hardly tractable.

Fortunately, the cases of most practical interest correspond to the
situation where one pair of waves is dominant and the others are strongly
attenuated and excited only very locally to the terminations. Over most
of the system only the dominant waves have appreciable amplitude and may
be amplifying or only weakly attenuated.

The situation is analogous to that in ordinary electromagnetic wave-
guidesA1’u2 used in a frequency range where only the lowest transverse
eigenmode propagates freely. Evanescent higher order transverse eigen-
modes are excited locally to the termination and the impedance or
reflection coefficient for the dominant mode is measured at a point
sufficiently far from the termination that the evanescent modes are
negligible, The locally excited higher modes, which are necessary to
satisfy the boundary conditions in a full treatment of the problem via
Maxwell's equations, contribute to the reflection coefficient for the
dominant waves.

In the present case we can lump together the effects of the evanescent
modes together with those of surface waves, if any, into the reflection
coefficient of the dominant wave. The theory of the previous section is
then gpplicable as far as Eq. (9) which determines the differences

{k+ - k_>n for the dominant waves. The only problem that arises is to
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solve the dispersion relation for the mode frequencies wn for the
+ —
allowed (k -k )n values, It is clear that the problem is determined

but it is difficult to give a general method when £ > 2 . In practice,

8
however, there sghould be no difficulty in solving particular problems

either graphically or numerically,

(C) Axial Mode Structure

In the simple case when the system is reciprocal, and the terminations

one constructs an axial eigen mode

are purely reactive (lp1 2! =1) ,
J

by superposition of two travelling waves of equal amplitude and resl k's

of opposite sign to obtain a pure standing wave of the form

(exp iwnt) cos (knz + Xn)

More generally, when the terminations are lossy (lpl 2| < 1) and,
or, the system is non-reciprocal, the modes will be composéd of separate
waves with k+ and k complex, and the total solution is a partial
standing wave.

It is useful to express the total solution in the form
= -w 3!
¢n(t,z) Yn(z) cos [wnrt + Xn(z)] exp it (1h)

where Yn and Xn are real functions of 2z , because in practice it is

the amplitude Yn and phase xn of the total wave which can be measured
as functions of =z ., Moreover, a measurement of Y(z) and ¥(z) allows
one to determine the reflection coefficient as in a transmission line
impedance measurement.

From Egs. (8) we have

+
L—le-l = |pllZE/L lpglzl/L

and

(0% - 07) = nr % (6, - 6,)/2 + (k- k)(z, +2,)/2
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The values of the relative amplitude and phase difference of the component
waves depends on the origin of the z-coordinate. For simplicity and

without loss of generality, we may take the origin at the center so that

(z +z,) = o, z, = -L/2 , Z, =+ L/2 . Then we have:
1
it oyl &
7 = [1/2 (15a)
¥ le,
and (¢+ - ¢ ) =nx * (91 - 92)/2 . (15b)

Since we are not interested in the absolute phase, it is convenient

to take

where

= (67 - ¢7) = nx = (91 - 92)/2 (16)

is the phase difference between the component waves at the center, and
the sign is taken to be the same as that of wr .
Then, to within an arbitrary amplitude factor and an arbitrary time

phase, the normal mode can be written in the form (14) where

[Y(z)]g = !pll exp 2 kzz + lp2| exp 2 k; z

and + 2 ‘pl

z sin (¢ - k:z) ll/gexp k; z sin (¢ + k;z)]

tan x(z) = [Iplll/gexp k o,

il/g

[[p ‘ /gexp k. exp k; z cos (¢ + k;z)]

+
z cos (¢ - krz) + lpg

+ - . .
In Eqs. (17), (18), the quantities ¢, (k -k ) are determined in terms

of oy Z’L)n from Egs. (16) and (9) respectlvely In general, when the

+
medzum is non-reciprocal, the values of k ki depend on the form of

30
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the "infinite" dispersion relation and must be found by the method of
the previous section. Hence, in general, the axial mode pattern depends
not only on the system length and terminations, but also on the medium,

However, when the medium is reciprocal we have

kIL = - KL= %»'Ln Iplllpgl = kL (say)
and
k:L =~-kxL=[orzx (8 + 82)/2] =k L (say) .
Then
[¥(2)]% ~ lo)| exp 2 k.2 + Ip2| exp - 2k z + zlplll/2 ngll/2 cos 2(¢ - k_2)
and (17a)
tan x(z) = [lplll/gexp k;z - ,pgll/gexp - kiz] tan (¢ - krz)

|1/2 . (18a)

1/2
[Ipll | exp kiz + ‘pg exp - kiz]

Since kr’ ki are determined when P15 Pos L, n are specified, the mode

J
pattern is determined purely by the system length and terminations, and
is independent of the form of the infinite dispersion relation, when the

latter is even in k . When, also, the terminations are identical,

Il

Ip [ = }P l = ‘pl and 9‘ = =6 so that ¢ n/2 , we have:
1 2 1 2 ?

[Y(z)]g = [cosh 2 k. 2z + cos(ng - riz)]

- cosh [2(4n Ipl)z/L] + cos [2(ngx = ) z/L - nx] (170)
and
tan X(z) - tanh k,z tan (=% - k_z) |
i 2 r
-~ - tanh k 2z tan [(nx + 0) z/L - nx/2] . (18b)
If, further the terminations are purely reactive, lpll = lpglz 1, we

have ki = 0 and

¥(z) = cos [{nx + 0)z/L - ny/2] s

x(z) =0 .

In this case the mode patterns are pure standing waves with cos or sin

form about the center according as n 1is even or odd.
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(D) Determination of Reflection Coefficient

The construction of axial eigen modes for a finite length system
from pairs of roots ki(w) of the infinite system dispersion relation,
as described above, depends upon the characterization of the terminations
by complex reflection coefficients for these waves. This enabled us to
describe the finite system behavior in general terms; in particular
the stabilizing effect of end losses and the partial standing wave
structure of the modes for systems with end loss and/or a non-reciprocal
dispersion relation, However, if the theory is to have utility for
specific systems, one must have a method for determining the reflection
coefficient either by calculation or measurement,

Unfortunately, in many plasma experiments using discharge columns,
the boundaries are ill-defined and the boundary conditions difficult
to specify in terms precise enough for calculations. For a Q-machine,

45, Ll

for which there are approximate theories for the physical processes
at the hot end-plates, the situation is better. However, since there
are sheaths at the end-plates, it is strictly not possible to regard

the plasma between the plates as a section of a uniform infinite system.
There is also a more fundamental problem in using a fluid description
for a bounded system, for example collisional drift waves in a Q-machine,
in that a fluid description breaks down close to a boundary. When the
magnetic field is normal to the boundary the fluid equations fail within

a mean free path, A of the boundary, while if B 1is parallel to the

2

surface it fails within a distance A or the gyro-radius, p whichever

2
is the smaller. Consequently, it is difficult, in general, to calculate
the reflection coefficients for the dominant waves ki(w) from a
knowledge of the physical processes at the boundaries.

For these reasons it is more satisfactory to regard the reflection
coefficient as an experimentally determined quantity. The effect of
sheaths and the failure of the fluid description are lumped together
with those of possible localized surface waves and higher modes (for
B > 2) into an effective reflection coefficient measured at distances

from the boundary greater than the mean free path ( or gyro radius) and

sheath thickness. This standpoint is analogous to transmission line
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practice where: although the reflection coefficient can be calculated in
principle for arbitrary terminations, in practice it is usually much
simpler to measure it,

Except when D(w,k) = O indicates absolute instability and alsc
there are no normal axiallmodes, it is possible to measure the reflection
coefficient either by the usual transmission line method or by a modi-
fication thereof, If it is practicable to effect a more or less matched
termination at one end, lpli ~ 0 , so that any convective instability is
stabilized, it is possible to determine p2 as a function of ® by
externally exciting a wave and measuring the amplitude and phase of the
resulting partial standing wave in the standard fashion.u2 If this is
not practicable then one has to deal with the resonant modes and extract
the reflection coefficients from a comparison of the measured amplitude
and phase with the theoretical expressions of Egs. (17) and (18)m If the
system is stable, either because D(w,k) = O indicates stability, or
because a convective instability is stabilized by end loss, then the
resonances would be externally excited. On the other hand, if the
system is unstable one would analyze the standing wave pattern of the
self-excited instability., This would probably only be possible for
parameter values a little above threshold when a single mode is weakly
excited., In either case the reflection coefficient can be measured as

a function of ® by varying the system length.
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IV, APPLICATION TO COLLISIONAL DRIFT WAVES IN Q-MACHINES

The Q-machine, as it has been developed, represents the best defined
and understood experimental vehicle for the study of waves and instabilities
in highly-ionized plasmas. Much of the early work was confused due to
an inadequate understanding of the steady state., With the advent of

b3

von Goeler's steady-state theory, which emphasized the importance of

hh-15

end-plate recombination, and its extension by Chen, who pointed
out the dominant role of end-plate temperature inhomogeneity on the
plasma potential profile and radial diffusion, more closely controlled
conditions and more consistent results have been obtained.

The @-machine has been used particularly for studying density
gradient driven collisional drift waves and instabilities, and a reason-
ably detailed correspondence between theory and experiment has been

46 , b7

established. An important factor in this achievement was the
decoupling of density gradient drift waves from edge oscillations
associated with the strong radial temperature and potential gradients

near the hot-plate edge., This was obtained by restricting the neutral
flux to the central region of the hot-plate where the temperature gradient

is small,

(A) Collisional Drift Wave Theories

The various theories for colligional drift waves are derived in
rectangular geometry (x, v, z) with the magnetic field B along z and
the zero order gradients of n (and T) along x , and in the local approxi-
mation kx >> % = (1/n)(3n/3x) . A linear analysis for perturbations
varying as exp i(wt - E-E) is performed on the set of moment equationsu8
[i,ea conservation of particles, momentum and energy) for the separate
electron and ion species, the set being closed by appropriate assumptions
depending on whether two or three moments are used.

4 variety of assumptions are common to the theories, namely the

guasistatic one (E = - V¢), quasineutrality (ne = ni)) neglect of electron

2
inertia, neglect of ion temperature fluctuations (ion energy equation
omitted>} and low frequencies (0 << wci) . The various theories also
differ according to which of the following additional approximations are

made:

Sh



(a) Neglect of electron energy fluctuations (isothermal theory,

electron energy equation omitted)

(b) Neglect of ion parallel motion.

The various theories, the approximations made, and the order of the

dispersion relation in ® (a) and k“(ﬁ) are listed in Table I.

TABLE I
Approximations | Axial Current Authors a g
a,b v, =0 Hendel, Chu and 2 |2 (even)
27 O“ 2 %

Politzer ™ ;Rowberg

and Wong
a, VO“ =0 Schlitt and Hendelllr9 3 |4 (even)
b, oy = 0 Tsai, Perkins and StiXSO 3 |4 (even)
b, Yo, # 0 Tsai, Ellis and Perkins = | 3 |4 (odd)

oy = 0 Hartman and Watanabe o b |6 (even)

In the earlier isothermal theories (Refs. h6, L, L9) there is no
effect due to the inclusion of axial current because of an exact can-
cellation when the electron continuity and momentum transfer equations
are combined.t To incorporate this additional destabilizing effect it
is necessary to treat Te as a variable via the electron energy eguation
(Refs. 50-52). The dispersion relation then involves odd powers of Kk
and the medium is non~-reciprocal. The inclusion of parallel current in
the theory of Ref, 52 would introduce odd powers of k but leave the

order unchanged.

¥ This exact cancellation only occurs for a fully ionized plasma. For

weakly ionized plasmas, in which the charged particles collide with
the neutral background, one obtains a destabilizing effect due to
axial drift in an isothermal theory using the first two moment

. ,11
equations.

55




(B) cCorrelation of Theory and Experiment for Collisional Drift Waves

(i) Isothermal Theory - No Axial Current

T

. L6
The earlier work ~’ on collisional drift waves in symmetric
Cdouble—ended) Q-machines without axial current was interpreted in terms
of the isothermal theory neglecting parallel ion motion. The dispersion

relation can be written, with the convention exp i(wt - ker):

2
D(w,K) = W+ {1 - i [M{— + C,bv,]} W
b Vv i i
e
C.bv K2 2
{ 5 1v i [££~:~El§_ - C.bv ]}: 0 (19)
bV 1
e e
~TX
- H w = M I e———
where w wVwD ; D ky Vh o Vp B

kf T 5 k2 T V..
b - k2oL ., __ii
2’ 2 i w
m. O W m D
i ci D e
C Vv .
N ; ei .
€ D

Here vei 5 vii are the collision frequencies as defined by Braginskii
and the coefficient of electron parallel resistivity Cr = 0,513 for a
singly ionized plasma. The coefficient of ion viscosity Ci is given
as (3/10) by Braginskii but was taken as (1/L) in Refs. 46 and L7. With
c, = 1/4, Eq. (19) is the dispersion relation of Wong and Rowberg. That
of Hendel et al differs slightly in terms involving b , which is
necessarily small compared to unity for fluid theory.

In applying this theory to the cylindrical geometry of the Q-machine,
ky is real and determined experimentally by identifying it with mw/a
where m 1is the azimuthal mode number and a 1is the radius at which

the azimuthally travelling wave has its maximum amplitude. Also kx

is determined from the radial wave profile to give

36



2 2 2 2
k7 = kx + ky . Furthermore kH is determined from the axial profile

L

of the wave, a matter we discuss at greater length below, All the other
parameters are determined with reasonable precision from the experimental
conditions,

: A partial mapping of K into the w-plane via Eq. (19) for conditions
corresponding to Rowberg and Wong's experiment is shown in Fig, 5,
Because D is even in k , the real k-axis folds on itself and the two

sheets are shown in a single diagram. The relevant branch point occurs at

w, = icib\)i ; Ks =0 .
Since L > 0 the system can never be absolutely unstable, The real
k-axis terminates for k =+ ® at w = [(1-b) + iQCibvi]/(l+b) which
corresponds to stability in the limit of short parallel wavelength. At

intermediate values of K the real K-axis may or may not dip into the

2
lower half plane, corresponding respectively to convective instability
or stability, depending on the parameter values. The condition for

convective instability is

g2 {1+b) 32 (20)

1 (1—b)2 1
which for b << 1 may be approximated to
. , o \
B < (8c?v?) (202)
- ii
This gives a threshold magnetic field for marginal instability
B « V.l/i.
c i

Correlation between theory and experiment has been made in one of
three ways: comparison of the onset field and frequency for self-excited
unstable modes; comparison of the frequency and damping rate for

N7

externally excited modes when the system is stable; comparison of the

frequency and growth rate for self-excited modes when the system is

1 .
unstable and feedback stabilization is switched off. 6 In all cases it
is found experimentally that the system is not as unstable as theory

predicts, i.e. the damping rates are larger or the growth rates smaller
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than predicted. In terms of the onset field BC for a given mode, the
experimental value is a factor ~ 1.5 - 2 higher than predicted. There
are several possible reasons for this discrepancy but the one which
concerns us here is the possible effect of end-plate damping.

In practice it is usually found that, for a given m the mode

b4
with the largest parallel wavelength A (5 2n/k ) is the most unstable,
and most of the measurements have been !estrictgd to this mode, This
is to be expected from the shape of the map of the real k"—axis in the
W-plane (Fig. 5) unless the machine is so long that the lowest axial
mode (smallest k“) lies well to the left of the minimum of w(ku real),
in which case the next mode could have a higher growth rate.

Hendel et al,and also Rowberg and Wong,measure an axial standing
wave with X“ z 2L for both electron and ion-rich sheaths, The former,
who worked mostly with electron-rich sheaths found k" ~ 2L corresponding
to a condition close to a short-circuit at the sheath edge. The latter,
who worked mostly with ion-rich sheaths, investigated the dependence of
X” on the potential U of the plasma relative to the end plates {Figa 6)«

They found x“:w 2L  for an electron-rich sheath (U = -0,05 V) and

A ~'3.6L for an ion-rich sheath (U = + 0.5 V), in reasonable agreement

! Lk

with a formula due to Chen:

1t L el e

2 2 2pi wci Enmi

kL -+ kL v m )1/2 {

1 U<O
exp-elU/T U>0 2<21>

where pi is the ion Larmor radius. For electron-rich sheaths, (U < O}y
the r.h.s. of Eq. (21) is large and X“;w 2L for the lowest mode, For
ion-rich sheaths, (v > O), the r.h.s. can become comparable or less than
unity and X“ > 2L, for the lowest mode.

Equation (21) was derivedm‘L on the assumption that kH is real and
neglected any end-plate damping of the modes. Chenua discusses two
damping processes connected with the end plates. The first is due to
the fact that some charged particles, carrying wave energy, escape to
the end plates and are replaced by new particles which do not have this

wave energy. For ion-rich sheaths this applies to the ions and should
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give rise to significant damping whereas for electron-rich sheaths it
applies to the electrons and should give little damping. In either case,
particles of the opposite charge are very largely reflected at the sheaths,
The second process is end-plate diffusion resulting in randomization of the
phase of jon gyration when ions are reflected at the end plates.

Rowberg and Wong47 attribute the discrepancy between their ohserved
and calculated growth rates for ion-rich sheaths to end-plate damping.
Following Chenuu they calculate a temporal damping decrement

wiD = (l/Nl)(BNl/at) where N, is the total number of perturbed ions

1
in the column and aNl/Bt is the rate at which such ions are lost by
recombination at the end plates. For ion-rich sheaths the decrement is

evaluated as

2 Vitn 1
W, =—=11 - - >
D === 11 + exp e(u_ - U} u)/T]™" (U > 0) (22)
where vith is the ion thermal velocity, UW is the end-plate work
function and UI the ionigzation potential of the neutrals. The experi-

mental damping ratet is then compared with the algebraic sum of the
theoretical growth (damping) rate and the end-plate damping decrement
calculated from Eq. (22).

While Eq. (22) is plausible and leads to values for wiD which agree
approximately with the discrepancy between measured and calculated growth
(decay) rates, its derivation can be criticized on several grounds., Firstly,
the definition of N1 as the number of perturbed ions is obscure; secondly,
no account is taken of the spatial dependence of wave energy along the
machine; thirdly, it is based on collisionless concepts and effectively
distributes the damping uniformly along the system, It is clear from
the viewpoint developed in the present paper that, within a fluid model,
end-plate damping should be treated as a local effect producing imperfect
wave reflection (lpl < 1). Consequently the mode is a partial standing
wave constructed from roots ki(w) with complex ki corresponding to
spatial growth towards the ends. The partial standing wave gives a

flow of wave energy towards the ends where it is dissipated, and because

of the spatial growth, the temporal growth rate is reduced.
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Thus end-plate damping is incompatible with a pure standing wave
(kz real) as assumed by Rowberg and Wong. If the observed mode was
indeed a pure standing wave then end-plate damping could not have been
responsible for the discrepancy in temporal growth rate. On the other
hand, if end-plate damping was operative, then the mode could not have
been a pure standing wave, The theory of Sec, III should allow one to
determine, from careful measurements of the axial mode pattern, the
reflection coefficients and the values of ki 5 ki . Hence by solving
the dispersion relation for these k values, the temporal growth rate
can be determined, taking account of end-plate damping. Thus one can
establish experimentally to what extent the discrepancy in temporal
growth rates is attributable to end-plate damping.

Figure 7 shows curves of temporal growth rate wi versus magnetic
field B , calculated from Eq. (19) for the conditions of Rowberg and
Wong's experiment for the first axial mode with m =2 . The values
of ]p}(:ipl|=|p2|) have been varied keeping the phase angle 60 (=Ql=92)
fixed at n/1.8 , to give X“ ~ 3,0L when lblu 1 as taken by Rowberg
and Wong, It is seen that reducing lpl reduces the growth rate and
leads to damping, but it is clear that no gsingle lpl < 1 curve matches
the experimental results. The Ipl = 0,3 curve matches at low B but
has the wrong shape at large B ., On the other hand, Rowberg and Wong's
procedure of subtracting a constant damping decrement wiD’w 1.4 X 1O5 sec"1
from the theoretical curve for real k“ (Ipl = 1) does lead to a reason-
able match with the experiment. However, in the experiment Xu is
sufficiently small that the effect of ion parallel motion is important,
especially at higher B , so we should not expect agreement with a theory
neglecting ion parallel motion.

Including ion parallel motion in the isothermal theory leads to the
dispersion relation:

>

2 _
WooF QW+ OGW + Oy =0 (23)
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where

2
K=C_ bv
al——l:<£+6) +u(c bv_>2J [i——zg———-gcw]
b ve i
ke vl<l—b)K
o, = S - L4 (c bv )2
> e
8c_ bv m
+ 3 i +2 = S bV K + 2 ﬁj;lil L
S i

Figure 8 shows the growth rate as a function of B calculated from

Eq. (25) for various values of Ipl for the same conditions as Fig. 7.
Comparing Figs, 7 and 8 it is seen that the inclusion of ion parallel
motion reduces the growth rate appreciably, especially at large B .

As a result there is now much better agreement between the experimental
damping curve and a theoretical one taking account of end-plate damping
through a reflection coefficient tp[ <1 . The best match occurs for
%p]zv 0.6. The relatively poor match for low B is probably due to
the fgct that b (m B_g) is not particularly small,

Figure 9 shows the amplitude and phase of the lowest axial mode
for various values of lpl . For [pl = 0.6 the phase shift over the
central region accessible to measurements is no more than 53. Now, in
stating that the observed axial mode was a standing wave, Rowberg and
Wong placed no experimental limit on how small the phase shift was.
However, it seems probable that a phase shift of 6 went undetected,
especially in view of the fact that the phase varies rapidly with azi~
muth (m times the angle), so that detection of a small axial shift pre-

supposes a rather precise tracking of the probe along a field line,
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Thus, from the published data it is difficult to assess to what
extent the discrepancy in growth rate is attributable to end-plate
damping, but more precise measurements of axial phase shift should
enable the fact to be established, In the case of the experiments of
Hendel et al with electron-rich sheaths, the effect of end-plate damping
was probably smaller. However, as is clear from the results of Figs. 7-9,
end-plate damping can give rise to appreciable increase in the threshold
magnetic field and yet give little detectable axial phase shift,

Finally, it may be noted that the difficulty of detecting the
presence bf end-plate damping from the axial mode structure is grestest
for the lowest axial modes K“ 2 2I. because there is no minimum of the
wave amplitude in the system. If measurements could be made around the
minimum of a higher-order axial mode the reflection coefficient could be
determined with greater accuracy.

(ii) Non-Isothermal Theory and Effect of Axial Current

A priori, there is no reason to believe that collisional drift
waves are isothermal. It is just that, within a fluid treatment, the
simplest theory results from using the first two moment equations,
closing the set by assuming constant T. By treating T as a wave
variable, and using a scalar third moment (energy) equation to complete
the set, one expects the pressure waves obtained from the isothermal
theory to be modified and new wave types (temperature waves) to appesr,
since the dispersion relation is of higher order, For weakly ionized
plasmas it is well known that a non-isothermal theory is necessary to
explain striations. 1In that case, small temperature fluctuations produce
large changes in ionization rate and the temperature waves become unstable

55

ionization waves, Temperature fluctuations have also been shown to be

important in drift-type instabilities in P.I.G. discharges.Sh

The isothermal theory of collisional drift waves, neglecting ion
parallel motion, has been generalized by Tsai, Perkins and Stix5o to
include Te as a variable, They find that the drift waves are modified
so that the discrepancy in onset field is reduced. They also find a

new root w(k) which they label an entropy wave. This is stable under

‘conditions that the drift wave is usually observed, but can be unstable

bt




under other conditions. Experimental evidence for the fact that drift
waves are indeed non-isothermal has been provided by Motley and Ellis55
from a careful interpretation of Langmuir probe measurements.

The non~isothermal theory of Ref. 50 has been generalized by Tsai,
Ellis and ?erkinsSl to include the effect of an axial current (electron

velocity ). This introduces odd powers of Kk into the dispersion

v
Ol
relation so that the medium is non-reciprocal with respect to propagation

in the #z directions. Neglecting zero-order temperature gradients

the dispersion relation can be written in the form:

d taki = T
and taking Ti e ?

— 2 ,
D(w,K) = w o+ BoW + BV + By = 0 (2k)
where
r 2
1+b
B :§1-CK4 -1“ C)-—~+va]
2~ | 1 b 2] v,
F{1+b) (Cg'C5)KLL (C2+2)Cibv' (2+b)v
B, = - é - 5 + . = K° + ClKv}
\ e
e
(Cl—Cu)b + (cl—c ) L3 2
| 5. K°v (1-b . K _
1 v +( b Cg)ve + €, bV RV - CibYy
e

_ [ (GC5)

+ v - K
B b Y
ol g ", | )
e
B Py )
(egc5) 1o b (C 5 2,2 4+ C,C.bV Kv
+i 2 —————2— CibViKk (1-b) K'v + 3CibviK ve + C GV,
e
Ve
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= 2
where Cl = —5-(—;- Ct + 5)&: 5.00 ,

=2 29

c, = 5 [Ce .+ (Ct +1)) &~ 3.03
=2 2

c3 5 (ct +1)~ 1.9 ,
Ez o~

c, 5(ct+1)~2.85,

c El(c +1) ~ 3.99

5 3t I

C, =0.711, C_ =3.16 , C_=0.513, and v = VO“(T/m\e)_l/g .
Equation (2L) differs slightly from that of Ref. 51 in terms involving
b because no approximations involving b << 1 have been made,

Figure 10 shows the map of the real K-axis into the w-plane visz
Eq. (2#) with v = O for the same parameters as Figs. 5, 7 amd &, The
broken lines show the same contour from the isothermal theory, Eg. {19>m

Branch I (the drift wave) is strongly modified at small K and shows

2
lower growth rate for K < 20, but higher growth rate for Kk 2 20, corres-
ponding to Rowberg and Wong's short machine, There is also a significant
change in frequency, LA Unfortunately the frequency is not a good
datum for distinguishing the presence of non-isothermal effects in experi-
ments because, to compare with the slab model theory, one has to correct
for the azimuthal Hall velocity Vg = Er/Bz from measurements of EX 5
which are not very precise. Branch II (labelled by Tsai et al as the
flute mode) is little affected by the inclusion of non-isothermal effects,
while Branch III is the new branch (entropy"wave) which is weakly unstable
for very long wavelengths.

Figure 11 shows the real K-axis mapped into the w-plane for the same

-2
parameters as Fig., 10 but with v = 1.86 X 10 corresponding, for

1/2

)

potassium ions, to v. =5 ¢ where c_ = (T/m_) is the ion sound
? s ’ s i

speed, The case v =Og (from Fig. 10) is shown by a broken line for
comparison, When v # 0 ,the real K-axis no longer folds on itself
and the lowest relevant branch point has migrated from Ws =0 to

W A (-0.1%3 - i 0,085) so the infinite system is absolutely unstable.

The drift wave (I) and entropy wave (III) branches are strongly modified

9
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by the current, especially for small IKl . In fact the topology is
changed so that the drift (Ii) and entropy wave (IIIi) branches are
interconnected, For IKI > 10, where the branches Ii can be identified
as drift waves (I) modified by the current, the current is destabilizing
for negatively directed waves for K 2 - 22 and stabilizing for K f,‘ 22,
On the other hand, for the positively directed wave, the current is
stabilizing for K <15 and destabilizing for K > 15 . Thus for large
iKi the effect of the current is destabilizing or stabilizing according
as the phase velocity is parallel or antiparallel to the electron drift,
However, at large \K\ it is probably necessary to include the effect of
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ion parallel motion as discussed by Schlitt and Hendel in the isothermal
theory,

Tsai et al5l consider the boundary conditions for a Q-machine and
the construction of normal axial modes., The boundary conditions are
derived only in the limit of strongly electron-rich sheaths and neglect
end~plate damping. In these limits they obtain the conditions

ni/nO = erl/TeO (25a)

and Tel/TeO =0 . (26a)
Condition (25a) agrees approximately with Chenu6 in the limit of electron-—
rich sheaths and corresponds to a short circuit, Tsal et al then con-
struct normal axial modes from the four roots k”(w) satisfying these
boundary conditions. For conditions of interest, two roots (labelled
drift waves) are dominant while the other two (1abe11ed entropy waves)
are heavily damped and only have significant amplitude near the end plates.
Because the medium is non-reciprocal they find the modes are partial
standing waves, even though no end-plate damping is assumed,

To discuss more generally the dependence of the normal axial modes
on the terminations, when these are specified in terms of reflection
coefficients for the dominant waves, a map such as Fig. 11 is not con-
venient, A convenient procedure is to map into the w-plane contours of

constant (K; - K;) and (B; - K;) for the dominant modes as shown in

o2



Fig. 12 for the same parameters as Fig. 11, If values of pl, p2 for
these dominant modes are given, either from measurements or theory,

the difference (K+ - K—) can be calculated from Egqg. (9) and the normal
mode frequencies read off from Fig. 12. The contour {K: - K;) = 0

is the locus of normal mode frequencies when the terminations are
perfectly reflecting, Comparing this with the broken line for the
case v = 0 and perfect reflections, it is seen that the current

destabilizes the normal axial modes over a wide range of (K: - K;)

values.

(C) General Remarks

While the approximate agreement between experiment and the earlier
isothermal theory neglecting ion parallel motion was good by accepted
standards in plasma physics, it is clearly important to identify and
take account of those factors in the theory necessary to produce more
detailed agreement, Two of these factors, electron temperature variation
and ion parallel motion have been identified. Another factor, whose effect
is difficult to assess quantitatively is the lack of satisfaction of the
local approximation kx >> % and the associated condition ky > kx
employed in the slab model.

In addition to these factors associated with the theory for an
infinitely long system, we have emphasized the need to consider the
normal axial mode structure for a finite-length system, and show how
these may be constructed when the terminations are specified in terms of
reflection coefficients for the dominant waves., It was shown that a
reflection loss which is small enough to give a relatively small detect-
able effect on the axial mode structure, compared with the lossless
case, may give a significant reduction in temporal growth rate and a rise
in the instability threshold. Furthermore, the recognition that end~
plate damping implies a partial standing wave,even in the case of zero
axial current, leads to an experimental method of determining its
magnitude in terms of a reflection coefficient lpl < 1 , analogous to

to the methods used for arbitrary terminations in passive transmission

lines,
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In a final analysis it should be possible to relate these experimental
reflection coefficients to a suitably detailed physical theory of the
end plates. The present theories for the end plates are approximate
and incomplete. For instance, if both electron temperature variations
and ion parallel motion were included one would need three boundary
conditions on the wave variables at each boundary to construct complete
normal modes from the six roots k(®) . 1In the absence of such a
detailed theory, the approach suggested here leads to a practical method

of determining the influence of the terminations on the axial modes,

)




V. DISCUSSION
In this paper we have discussed the general question of how, and
under what conditions, it is possible to construct normal modes for an
arbitrarily bounded system from roots of the dispersion relation
Dcwy%) = 0 for a corresponding unbounded system. The treatment is
restricted to systems described by fluid-type equations which are uniform
along one coordinate., With these restrictions, normal modes may be con-

+
structed from a pair of dominant roots k (®) of D = 0O , where the

2
allowed Ccomplex) values of the difference (k+ - kw)n are given by
Eg. {9} in terms of the boundary conditions, expressed as reflection
coefficients for these dominant waves, The corresponding (complex)
normal mode frequencies, wn , are given by Eq. (12}. The solutions only

represent normal modes if Im wn < Im ® where (w ’ks) is the lowest
S

s
(dominant) relevant branch/saddle pointsof D =0 4in the sense of
Derfler and Briggs. The axial structure df the normal modes is a partial
standing wave described by Eq. (14) with Egs. (17) and (18).

A number of general conclusions were drawn concerning how the
system behavior depends on the properties of D = 0O and the values of

the reflection coefficients In general, provided the terminations

p .
are sufficiently loss-free (Ipi)EI not too small), normal modes are found
whether D = O represents stability, convective instability or absolute
instability. In the latter cases, temporally growing normal modes are
found provided the system length is appropriate, As the terminations are
made more lossy, (!pl 2| reduced) , temporally growing modes are stabi-
lized in the case D =’O represents convective instability, but the
system still supports spatially growing waves excited for real frequency.
When D = O represents absolute instability, increased end losses
reduces the growth rates of normal modes until they all grow less rapidly
than waves associated with the lowest relevant branch/saddle point

=0

the

(@S)ks)“ In the limit of non~reflecting boundaries, 5

loy |
1,2
system is effectively infinite and a localized perturbation grows as
described asymptotically by Eq. (5)_
In general the normal axial modes are partial standing waves composed

+
of travelling waves with distinct complex values Xk~ . Only when the
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system is reciprocal (D even in k , so k+ = - k~) and the terminations
purely reactive ([pl 2| = 1) are the component ki values purely real.
For non-reciprocal sy;tems, such as plasma columns with electrons drifting
axially through ions, the normal modes in genefal have ki complex

even when the terminations are lossless,

In Sec. IV these ideas were applied to collisional drift waves in
Q-machines., It was shown that the discrepancy between the observed and
calculated growth rates in Rowberg and Wong's experiment may be explained
by end-plate damping, but not‘in the manner they suggest. Only if the
mode is a partial standing wave and account is taken of axial ion motion
can the discrepancy be explained by end-plate damping. It was shown
that end-plate damping can have a marked stabilizing effect, and yet
give little detectable axial phase shift (on the commonly observed
lowest axial mode). The dependence of the normal mode frequencies,
growth rates and axial structure on the reflection coefficients was also
discussed for the case of a Q-machine with axial current,

By characterizing the terminations by reflection coefficients for
the dominant waves, determined by measurements on the partial standing
wave at large distances from the boundaries, a number of factors are
absorbed to which it is difficult to give a detailed theoretical treat-
ment, These include effects due to the excitation of other wave types,
including surface waves, sheath effects, and the transition from a fluid
description to a kinetic description within a mean free path of the
boundary.

Perhaps the most important point to which we have drawn attention,
is that the behavior of practical (bounded) systems, with respect to
linear perturbations, is not generally describable in terms of roots
m(g real) of the dispersion relation for an unbounded or periodically
bounded system, as is often assumed., To be sure, such a description is
appropriate when the planar model is adapted to toroidal geometry
and periodicity vconditions allow travelling wave solutions with real
k . Furthermore, a description in terms of a pure standing wave
(real ki waves) is appropriate for reciprocal systems with purely

reactive terminations., However, in general, bounded systems reguire za
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description in terms of roots k(w) of D=0 with complex k . The
requirement that one, at least, of the waves be spatially growing results
in lower temporal growth rates and can result in a quiescent system even
when the infinite system dispersion relation indicates (convective} insta-
bility. It seems probable that such effects due to boundaries explain56
why, in mirror machines, certain predicted instabilities are not observed.

The foregoing observations also imply that in practice many nonlinear
wave phenomena (e.g. inhomogeneous turbulence) cannot be adequately

explained by mode coupling theories based on the coupling of linearly

independent modes w(k real) of the linear theory.
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